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TL;DR Summary

ODE Forward Problem: Given θ, estimate x : [0,T]_Rd which satisfies the

ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.

ODE Inverse Problems:

Given data z(t1:M) = xθ(t1:M) + ε ∈ Rd, ε ∼ N (0,Σ), estimate θ.

Question: Are ODE inverse problems really likelihood-free inference?

Answer: No! If we use probabilistic numerics to account for the numerical forward
error, there is a differentiable likelihood!

Practical Benefit: New gradient-based methods are now available.
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Inverse Problems...
...are defined by their forward map F [Cranmer et al., 2020]

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D The forward problem is well-posed. (Numerical Analysis)
D The inverse problem is ill-posed. (Statistics, Machine Learning)
D The mix of numerical and statistical estimation invites a treatment by probabilistic numerics.

Inverse problems are called likelihood-free if their forward map is too expensive to approximate exactly.
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ODE Inverse Problems...
...are only likelihood-free because they have a numerical forward map [Cranmer et al., 2020]

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.

∀θ ∈ Θ, ODEs have a well-defined solution

xθ : ]0,T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), θ) ds,

and hence an high-fidelity forward map

F : Θ _C1([0,T];Rd), θ 7→ xθ.

D xθ has to be estimated with non-zero
step size h > 0, i.e. with low fidelity!

D With numerical error, e.g. Runge–Kutta:

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)
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Forward Map (likelihood): θ 7→ F(θ)
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ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.
∀θ ∈ Θ, ODEs have a well-defined solution

xθ : ]0,T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), θ) ds,

and hence an high-fidelity forward map

F : Θ _C1([0,T];Rd), θ 7→ xθ.

D xθ has to be estimated with non-zero
step size h > 0, i.e. with low fidelity!

D With numerical error, e.g. Runge–Kutta:

In classical numerics, ODE inverse problems
are likelihood-free!
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Probabilistic numerics inserts a likelihood...
...into the ‘likelihood-free’ ODE inverse problem [Hennig et al., 2015]

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
D ODE inverse problems are likelihood-free if numerical error is unaccounted.
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Probabilistic numerics inserts a likelihood...
...into the ‘likelihood-free’ ODE inverse problem [Hennig et al., 2015]

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
D ODE inverse problems are likelihood-free if numerical error is unaccounted.

Likelihood-free Differentiable
Likelihood

Probabilistic Numerics captures numerical error

Gradient-free methods:
D Density estimation methods
D ABC

Gradient-based methods:
D Gradient descent
D Hamiltonian/Langevin MCMC
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We propose the following likelihood.
Uncertainty-Aware Likelihood by Gaussian ODE Filtering [Schober et al., 2019, Tronarp et al., 2019, Kersting et al., 2019]

Assume that we observe noisy data z = z(t1:M) of the true x = x(t1:M), i.e:

p(z | x) = N
(
z; x,σ2IM

)
. (1)

For any θ, Gaussian ODE Filtering, a probabilistic numerical method, yields

p(z | θ) = N (z; x0 + Jθ, P + σ2IM)︸ ︷︷ ︸
numerical + statistical var.

) (2)

where J is freely-availabe from the filtering output.

Two advantages:
D P accounts for then epistemic (numerical) uncertainty for non-zero step size h > 0, and
D J = J(θ̂) is an estimate of the Jacobian of θ 7→ xθ at some support point θ̂, and implies gradient

and Hessian estimators

∇̂θE(z) := −J⊺
[
P + σ2IM

]−1
[z−mθ] , and ∇̂2

θE(z) := J⊺
[
P + σ2IM

]−1
J. (3)
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The likelihood account for the numerical/epistemic uncertainty!

D The statistical (aleatoric) variance σ2IM is accounted for in any case.
D The numerical (epistemic) variance P makes the implicit forward model tractable.
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The gradients are accurate enough to point towards modes!

Both the
D gradient estimator, and
D the Hessian-precionditioned (Newton) gradient estimator

are useful approximations.
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Insertion of gradients/Hessians unlocks gradient-free methods!

These gradient-based methods are more sample-efficient.

Sampling:
D Langevin MCMC
D Hamiltonian MCMC

Optimization:
D Gradient descent
D Newton’s Method
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Sampling Experiments

D Likelihood-free random-walk Metropolis (RWM) gets lost in regions of low probability.
D Gradient-based sampling quickly finds and covers regions of high probability.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast
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Optimization Experiments

D Likelihood-free random-search hardly learns at all.
D Gradient-based optimization quickly finds local maxima.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast

8



Collaborators
University of Tübingen (top row) and Bosch Center for AI (bottom row)

Nicholas Krämer (joint primary author) Philipp Hennig

Martin Schiegg Christian Daniel Michael Tiemann

9



Bibliography

▶ Cranmer, K., Brehmer, J., and Louppe, G. (2020).
The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences.

▶ Hennig, P., Osborne, M. A., and Girolami, M. (2015).
Probabilistic numerics and uncertainty in computations.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179):20150142.

▶ Kersting, H., Sullivan, T. J., and Hennig, P. (2019).
Convergence rates of Gaussian ODE filters.
arXiv:1807.09737v2 [math.NA].

▶ Schober, M., Särkkä, S., and Hennig, P. (2019).
A probabilistic model for the numerical solution of initial value problems.
Statistics and Computing, 29(1):99–122.

▶ Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective.
Statistics and Computing, 29(6):1297–1315.

10


