Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems

Hans Kersting*, Nicholas Krämer*, Martin Schiegg, Christian Daniel, Michael Tiemann, Philipp Hennig ICML, 2020

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

TL;DR Summary

<u>ODE Forward Problem</u>: Given θ , estimate $x : [0, T] \rightarrow \mathbb{R}^d$ which satisfies the ODE $\dot{x}(t) = f(x(t), \theta)$ on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$. <u>ODE Inverse Problems</u>:

Given data $z(t_{1:M}) = x_{\theta}(t_{1:M}) + \varepsilon \in \mathbb{R}^{d}$, $\varepsilon \sim \mathcal{N}(0, \Sigma)$, estimate θ .

Question: Are ODE inverse problems really likelihood-free inference?

Answer: No! If we use probabilistic numerics to account for the numerical forward error, there is a differentiable likelihood!

Practical Benefit: New gradient-based methods are now available.

UNIVERSITAT TÜBINGEN [Cranmer et al., 2020]

- + The forward problem is **well-posed**. (Numerical Analysis)
- + The inverse problem is ill-posed. (Statistics, Machine Learning)
- + The mix of numerical and statistical estimation invites a treatment by probabilistic numerics.

Inverse problems are called likelihood-free if their forward map is too expensive to approximate exactly.

..are only likelihood-free because they have a numerical forward map

..are only likelihood-free because they have a numerical forward map

..are only likelihood-free because they have a numerical forward map

..are only likelihood-free because they have a numerical forward map

ODE $\dot{x}(t) = f(x(t), \theta)$ on $t \in [0, T]$, $\forall \theta \in \Theta$. **ODEs** have a **well-defined solution**

$$x_{ heta}:]0,T] woheadrightarrow \mathbb{R}^d, \qquad t\mapsto x_0+\int_0^t f(x(s), heta) \,\mathrm{d}s,$$

and hence an **high-fidelity** forward map

$$F: \Theta \to C^1([0,T]; \mathbb{R}^d), \qquad \theta \mapsto x_{\theta}.$$

under initial condition $x(0) = x_0 \in \mathbb{R}^d$.

- *x*_θ has to be estimated with non-zero step size h > 0, i.e. with low fidelity!
- + With numerical error, e.g. Runge-Kutta:

In classical numerics, ODE inverse problems are likelihood-free!

Probabilistic numerics inserts a likelihood...

...into the 'likelihood-free' ODE inverse problem

- + Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
- + ODE inverse problems are likelihood-free if numerical error is unaccounted.

Probabilistic numerics inserts a likelihood...

...into the 'likelihood-free' ODE inverse problem

- + Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
- + ODE inverse problems are likelihood-free if numerical error is unaccounted.

Likelihood-free

Probabilistic Numerics captures numerical error

Differentiable Likelihood

Gradient-free methods:

- Density estimation methods
- + ABC

Gradient-based methods:

- + Gradient descent
- + Hamiltonian/Langevin MCMC

We propose the following likelihood.

Uncertainty-Aware Likelihood by Gaussian ODE Filtering

Assume that we observe **noisy data** $\mathbf{z} = \mathbf{z}(t_{1:M})$ of the true $\mathbf{x} = \mathbf{x}(t_{1:M})$, i.e.

$$p(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}\left(\mathbf{z}; \, \mathbf{x}, \sigma^2 I_M\right). \tag{1}$$

For any θ , **Gaussian ODE Filtering**, a probabilistic numerical method, yields

$$p(\mathbf{z} \mid \theta) = \mathcal{N}(\mathbf{z}; \mathbf{x}_0 + J\theta, \underbrace{\mathbf{P} + \sigma^2 I_M}_{\text{numerical + statistical var.}})$$
(2)

where J is freely-availabe from the filtering output.

Two advantages:

- + **P** accounts for then epistemic (numerical) uncertainty for non-zero step size h > 0, and
- + $J = J(\hat{\theta})$ is an estimate of the Jacobian of $\theta \mapsto \mathbf{x}_{\theta}$ at some support point $\hat{\theta}$, and implies gradient and Hessian estimators

$$\hat{\nabla}_{\theta} \boldsymbol{E}(\mathbf{z}) \coloneqq -J^{\mathsf{T}} \left[\mathbf{P} + \sigma^2 \boldsymbol{I}_M \right]^{-1} \left[\mathbf{z} - \mathbf{m}_{\theta} \right], \quad \text{and} \quad \hat{\nabla}_{\theta}^2 \boldsymbol{E}(\mathbf{z}) \coloneqq J^{\mathsf{T}} \left[\mathbf{P} + \sigma^2 \boldsymbol{I}_M \right]^{-1} J. \quad (3)$$

The likelihood account for the numerical/epistemic uncertainty!

- + The statistical (aleatoric) variance $\sigma^2 I_M$ is accounted for in any case.
- + The numerical (epistemic) variance P makes the implicit forward model tractable.

Both the

- + gradient estimator, and
- + the Hessian-precionditioned (Newton) gradient estimator

are useful approximations.

These gradient-based methods are more sample-efficient.

Sampling:

- Langevin MCMC
- Hamiltonian MCMC

Optimization:

- Gradient descent
- Newton's Method

- + Likelihood-free random-walk Metropolis (RWM) gets lost in regions of low probability.
- + Gradient-based sampling quickly finds and covers regions of high probability.

- + Likelihood-free random-search hardly learns at all.
- + Gradient-based optimization quickly finds local maxima.

Collaborators

University of Tübingen (top row) and Bosch Center for AI (bottom row)

Nicholas Krämer (joint primary author)

Philipp Hennig

Martin Schiegg

Christian Daniel

Michael Tiemann

- Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences.
- Hennig, P., Osborne, M. A., and Girolami, M. (2015). Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179):20150142.
- Kersting, H., Sullivan, T. J., and Hennig, P. (2019). Convergence rates of Gaussian ODE filters. arXiv:1807.09737v2 [math.NA].
- Schober, M., Särkkä, S., and Hennig, P. (2019).
 A probabilistic model for the numerical solution of initial value problems. Statistics and Computing, 29(1):99–122.
- Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019). Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. Statistics and Computing, 29(6):1297–1315.