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You already heard a few talk on ODE filters (smoothers). The goal of
this talk is to fill in a few thoughts on the following topics:

D the underlying SSM,
D forward convergence rates of ODE filters, and
D their use in inverse problems.
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Introduction
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Euler’s method
Solving ODEs by iterated first-order Taylor expansions Euler (1768)

logistic ODE: ẋ(t) = f(x(t)) = 5x(t)[1 − x(t)] on t ∈ [0, 1], with x(0) = 0.1 ∈ Rd.
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Runge–Kutta (RK) methods
RK methods match higher-order Taylor expansions Runge (1895); Kutta (1901)

D Explicit RK methods (like many other classical solvers) generalize Euler’s method. An s-stage RK
method chooses the coefficients (a, b, c) in

x̂(h) = x0 + h
s∑
i=1

biyi, with yi = f

x0 + h
i−1∑
j=1

aijyj

 ,

to match the p-th order Taylor polynomial
∑p

i=1
x(i)(0)

i! hi for a maximal p ≤ s.

D E.g.,the standard RK4 solver fits a p = 4-th order Taylor polynomial with s = 4 stages.

D Hence, assuming x(t) = x̂(t), RK assumes to perform iterated Hermite interpolation with perfect
data on x(i)(t), i ∈ {1, ... , 4}.
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Unaware of Uncertainty: RK falsely assumes perfect data
Since x(t) ̸= x̂(t) for t > 0, the uncertainty-unaware assumptions of RK are too optimistic.
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Part I: State Space Models and ODE Filters

The development of the different formulations
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Abbreviated History of (state-space) models for ODEs

1st phase: plain GP models
D 1991: Skilling first proposes to model ODE solutions with plain GPs
D 2014–2016: Hennig and Hauberg, Chkrebtii et al. and Schober et al. refine Skilling’s proposition

2nd phase: Probabilistic SSM conditioning on the derivative
D 2016–2018: Schober et al. and Kersting and Hennig introduce path-dependent SSMs conditioning

on yt = f(x̂)
3rd phase: Probabilistic SSM conditioning on the ODE:

D 2019–2021: Tronarp et al. introduce path-independent SSMs conditioning on the ODE itself, leading
to new algorithms
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1st phase: GP models
1991–2016 Skilling (1991); Hennig and Hauberg (2014); Chkrebtii et al. (2016); Schober et al. (2014)

ODE: ẋ(t) = f(x(t))

prior:

x(t) ∼ GP(m(t), k(t, t′)) (1)

n-th data-likelihood-pair (after n steps):

yn := f(m(tn)|y1:n−1 ) (2)

p(yn | xn) = N (yn; ẋn,Rn). (3)

This SSM is “path-dependent” because likelihood and data depend via my1:n−1 (tn) on y1:n−1.
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2nd phase: path-dependent stochastic filtering
2016–2018 Kersting and Hennig (2016); Schober et al. (2018)

ODE: ẋ(t) = f(x(t))

prior:

x(t) ∼ dX(t) = FX(t) dt + L dωt, (4)

n-th data-likelihood-pair (after n steps):

yn := f(m(tn)|y1:n−1 ) (5)

p(yn | xn) = N (yn; ẋn,Rn). (6)

This SSM is “path-dependent” because likelihood and data depend via my1:n−1 (tn) on y1:n−1.
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3rd phase: path-independent stochastic filtering
2016–2018 Tronarp et al. (2019a)

ODE: ẋ(t) = f(x(t))

prior:

x(t) ∼ dX(t) = FX(t) dt + L dωt, (7)

likelihood:

p(zn | x(tn)) = δ(ẋ(tn) − f(x(tn))) (8)

data:

zn := 0, (9)

This SSM is “path-independent” because likelihood and data are seperate and independent of previous
computations.
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The path-dependent SSM allows for the use of all Bayesian filters...
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...while in the path-dependent SSM only Gaussian filters are possible.
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The relation
Locally the path-dependent SSM is a Gaussian approximation of path-independent SSM

Let’s consider a local case, i.e. we have arrived at

x(tn) ∼ N (m−
n ,P−

n ). (10)

Old logic:

yn =
∫

f(ξ) dN (ξ,m−
n ,P−

n ). (11)

Use data yn = f(m−) to update the following likelihood
D p(yn | xn) = N (yn; ẋn, 0) (“Kalman ODE filter”)
D p(yn | xn) = N (yn;Hxn + Jf(m−

n )[yn − xn],Rn + Jf(m−
n )P−

n Jf(m−
n )⊺) (“extended Kalman ODE

filter”).
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The relation
Locally the path-dependent SSM is a Gaussian approximation of path-independent SSM

Let’s consider a local case, i.e. we have arrived at

x(tn) ∼ N (m−
n ,P−

n ). (10)

New logic: Replace f by its Taylor expansion f̂ around m−
n and update in the approximated model

p(zn | x(tn)) = δ(ẋ(tn) − f̂(x(tn))) (11)

For an m-th order Taylor expansion the resulting ODE filters are called “EKFm”.
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The relation
Locally the path-dependent SSM is a Gaussian approximation of path-independent SSM

Let’s consider a local case, i.e. we have arrived at

x(tn) ∼ N (m−
n ,P−

n ). (10)

previous name new name
n = 0 Kalman filter EKF0
n = 1 extended Kalman filter EKF1
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Part II: Convergence Rates

An exposition of three different sets of convergence results
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Convergence Rates of Kalman ODE Filters
Local Convergence Rates (Kersting et al., 2020, Theorem 8)

Theorem (local convergence rates)
Let f be sufficiently regular, and R > 0 an arbitrary noise model. If

D q ∈ N, and
D the prior X is a q-times integrated Ornstein–Uhlenbeck process or integrated Brownian motion

then we locally have:
D optimal polynomial convergence:

∥∥m(h) − x(h)
∥∥ ≤ Khq+1, and

D asymptotically well-calibrated uncertainties:
√

P(h) ≤ Khq+1/2.

Proof idea:
(i) note that the predictive mean deviates from a qth Taylor expansion by O(hq+1),
(ii) apply Taylor’s theorem to the predictive mean, and
(iii) use multiple triangle and Lipschitz inequalities.
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Why is a global convergence proof more difficult?
Because we cannot assume the steady-state! (Kersting et al., 2020, Proposition 10)

In every Kalman ODE filtering step nh_(n + 1)h

mn+1 = mn + Kn

[
f(m(0)−

n+1 ) −m(1)−
n+1

]
,

the Kalman gain Kn = P−
n H⊺

n
[
HP−

n H⊺ + R
]−1 is adaptive to num. uncertainty P−

n and eval. noise R.

Proposition (global bounds on Kalman gains)
For all constant R ≥ 0, then the limit steady-state is

lim
n _ ∞

K(0)
n =

√
4Rσ2h + σ4h2

σ2h +
√

4σ2Rh + σ4h2
h, lim

n _ ∞
K(1)

n = σ2h +
√

4σ2Rh + σ4h2

σ2h +
√

4σ2Rh + σ4h2 + 2R
.

If moreover the initial covariance P0 is small enough and R ≡ Khp with p ∈ [0,∞], then

(global bounds on gains) max
n∈{1,...,N}

∥∥∥K(0)
n

∥∥∥ ≤ Kh, max
n∈{1,...,N}

∥∥∥1 − K(1)
n

∥∥∥ ≤ Kh(p−1)∨0.
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Convergence Rates of Kalman ODE Filters
Global Convergence Rates (Kersting et al., 2020, Theorems 14 & 15)

Theorem (global convergence rates)
Let f be sufficiently regular, and R ≡ Khp for some p ≥ 1. If

D q = 1, and

D prior X is a q-times integrated Brownian motion.

then we globally have:

D optimal polynomial convergence:
∥∥m(T) − x(T)

∥∥ ≤ K(T)hq

D asymptotically well-calibrated uncertainties:
√

P(T) ≤ K(T)hq.

Proof idea: Define ε(nh) :=
∥∥m(nh) − x(nh)

∥∥, find limit of Kalman gains, and prove that (difficult part)

ε((n + 1)h) − ε(nh) ≤ Khq+1 + Khq
n−1∑
l=0

[
ε((l + 1)h) − ε(lh)

]
. (11)

and apply a special version of the discrete Grönwall inequality from Clark (1987) to (11).
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Experiments: O(hq) rates of Kalman ODE Filters
are confirmed and seem to extend to q ∈ {2, 3, ... }! (Kersting et al., 2020, Section 8)
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New Experiments by Krämer and Hennig (2020)...
...extend the O(hq) rates to up to q = 11!!! source: N. Krämer, P. Hennig “Stable Implementation of Probabilistic ODE Solvers”, 2020
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MAP estimate convergence rates
according to “Bayesian ODE Solvers: The Maximum A Posteriori Estimate” by Tronarp et al. (2021)

Assumption
Let f ∈ Cq+1(Rd;Rd).

Unlike the above convergence rates, Tronarp et al. (2021) considered the MAP

#–x ∗(t0:N) := arg min
#–x (t0:N)

[
− log (p ( #–x (t0:N) | z1:N = 0))

]
. (12)

Theorem
Under this Assumption and for any prior X(t) of smoothness q, there exists a constant C(T) > 0 such that

max
n=0,...,N

∥∥x∗(tn) − x(tn)
∥∥ ≤ C(T)hq, (13)

where x∗(tn) = H0
#–x ∗(tn) is the MAP estimate of x(tn) given a discretisation 0 = t0 ≤ t1 ≤ · · · ≤ tN = T.
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Convergence Rates via Nordsieck Equivalences
according to “A probabilistic model for the numerical solution of initial value problems” by Schober et al. (2018)

Schober et al. (2018) observed the equivalence of the filtering mean with Nordsieck methods

#̂–x (t + h) =
[
I− lH̄

]
Ā #̂–x (t) + hlf(H0Ā #̂–x (t)), (14)

Theorem
A Kalman ODE filter (EKF0) with 2-times integrated Wiener process prior coincides with the trapezoidal
rule

x̂n+1 = x̂n +
h
2 (f(x̂n) + f(x̃n+1)) , (15)

with x̃n+1 := x̂n + hf(x̂n). In particular, if initialized in this steady state, we have∥∥m(T) − x(T)
∥∥ ≤ C(T)h3 = C(T)hq+1. (16)
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Overview convergence rates

So, what is known about (extended) Kalman ODE filters with q-times integrated Wiener process prior?

Classical analysis
D local rates: O(hq+1), for

all q
D global rates: O(hq), for

q = 1
D main restriction: q = 1
D way forward: Repeat the

proof for higher q.

MAP estimate
D local rates: —
D global rates: O(hq) of the

MAP
D main restriction: No

known method converges
to the MAP.

D way forward: Show that
some method
approximates the MAP.

Nordsieck equivalence
D local rates: O(hq+2), for

q = 1, 2
D global rates: O(hq+1), for

q = 1, 2
D main restriction: q = 1, 2

and only in the
steady-state

D way forward: Find more
Nordsieck equivalences.
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Part III: Inverse Problems

A first uncertainty-aware computational chain
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Inverse Problems...
...are defined by their forward map F Cranmer et al. (2020)

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D The forward problem is well-posed. (Numerical Analysis)
D The inverse problem is ill-posed. (Statistics, Machine Learning)
D The mix of numerical and statistical estimation invites a treatment by probabilistic numerics.

Inverse problems are called likelihood-free if their forward map is too expensive to approximate exactly.
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ODE Inverse Problems...
...are only likelihood-free because they have a numerical forward map Cranmer et al. (2020)

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.

∀θ ∈ Θ, ODEs have a well-defined solution

xθ : ]0,T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), θ) ds,

and hence an high-fidelity forward map

F : Θ _C1([0,T];Rd), θ 7→ xθ.

D xθ has to be estimated with non-zero
step size h > 0, i.e. with low fidelity!

D With numerical error, e.g. Runge–Kutta:

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)
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ODE Inverse Problems...
...are only likelihood-free because they have a numerical forward map Cranmer et al. (2020)

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.
∀θ ∈ Θ, ODEs have a well-defined solution

xθ : ]0,T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), θ) ds,

and hence an high-fidelity forward map

F : Θ _C1([0,T];Rd), θ 7→ xθ.

D xθ has to be estimated with non-zero
step size h > 0, i.e. with low fidelity!

D With numerical error, e.g. Runge–Kutta:

In classical numerics, ODE inverse problems
are likelihood-free!
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Probabilistic numerics inserts a likelihood...
...into the ‘likelihood-free’ ODE inverse problem Hennig et al. (2015)

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
D ODE inverse problems are likelihood-free if numerical error is unaccounted.
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Probabilistic numerics inserts a likelihood...
...into the ‘likelihood-free’ ODE inverse problem Hennig et al. (2015)

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

D Inverse problems are called likelihood-free if F is too expensive to approximate exactly.
D ODE inverse problems are likelihood-free if numerical error is unaccounted.

Likelihood-free Differentiable
Likelihood

Probabilistic Numerics captures numerical error

Gradient-free methods:
D Density estimation methods
D ABC

Gradient-based methods:
D Gradient descent
D Hamiltonian/Langevin MCMC
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We propose the following likelihood.
Uncertainty-Aware Likelihood by Gaussian ODE Filtering Schober et al. (2019); Tronarp et al. (2019b); ?

Assume that we observe noisy data z = z(t1:M) of the true x = x(t1:M), i.e:

p(z | x) = N
(
z; x,σ2IM

)
. (17)

For any θ, Gaussian ODE Filtering, a probabilistic numerical method, yields

p(z | θ) = N (z; x0 + Jθ, P + σ2IM)︸ ︷︷ ︸
numerical + statistical var.

) (18)

where J is freely-availabe from the filtering output.

Two advantages:
D P accounts for then epistemic (numerical) uncertainty for non-zero step size h > 0, and
D J = J(θ̂) is an estimate of the Jacobian of θ 7→ xθ at some support point θ̂, and implies gradient

and Hessian estimators

∇̂θE(z) := −J⊺
[
P + σ2IM

]−1
[z−mθ] , and ∇̂2

θE(z) := J⊺
[
P + σ2IM

]−1
J. (19)
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The likelihood account for the numerical/epistemic uncertainty!

D The statistical (aleatoric) variance σ2IM is accounted for in any case.
D The numerical (epistemic) variance P makes the implicit forward model tractable.
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The gradients are accurate enough to point towards modes!

Both the
D gradient estimator, and
D the Hessian-precionditioned (Newton) gradient estimator

are useful approximations.
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Insertion of gradients/Hessians unlocks gradient-free methods!

These gradient-based methods are more sample-efficient.

Sampling:
D Langevin MCMC
D Hamiltonian MCMC

Optimization:
D Gradient descent
D Newton’s Method
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Sampling Experiments

D Likelihood-free random-walk Metropolis (RWM) gets lost in regions of low probability.
D Gradient-based sampling quickly finds and covers regions of high probability.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast
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Optimization Experiments

D Likelihood-free random-search hardly learns at all.
D Gradient-based optimization quickly finds local maxima.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast
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Thank you for listening!
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