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Numerical methods perform inference
Probabilistic numerics recasts numerics as inferential statistics [Hennig et al., 2015, Oates and Sullivan, 2019]

Both the evaluation of functions and the collection of data are gathering of (Shannon) information.

. Statistics estimates parameters in statistical models from collected data

. Numerics approximates solutions of numerical problems from function evaluations

By providing a statistical model that links func. eval. to the solution of a numerical problem,
probabilistic numerics solves numerical problems by statistics (or machine learning).

X Z

Q

information Z

QoI operator Q numerical method B

E.g. Integrals: compute QoI Q(f) =
∫
f(x)dµ(x) ∈ Q:

1. Collect evaluations f(xi) ∈ Z given f ∈ X
2. Compute approximation of Q(f) based on f | f(xi)
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An initial value problem (IVP)

ODE ẋ(t) = f(x(t), t) on t ∈ [0, T], under initial condition x(0) = x0 ∈ Rd

generalizes quadrature problems by the fundamental theorem of calculus:

x : ]0, T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), s) ds,

Bayesian Quadrature (BQ):

Big question: Can we construct a generalization of BQ for ODEs?
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ODE ẋ(t) = f(x(t), t) on t ∈ [0, T], under initial condition x(0) = x0 ∈ Rd

generalizes quadrature problems by the fundamental theorem of calculus:

x : ]0, T] _Rd , t 7→ x0 +
∫ t

0
f(x(s), s) ds,

Bayesian Quadrature (BQ):

Big question: Can we construct a generalization of BQ for ODEs?

5



An initial value problem (IVP)
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Euler’s method
Solving ODEs by iterated first-order Taylor expansions [Euler, 1768]

logistic ODE: ẋ(t) = f(x(t)) = 5x(t)[1− x(t)] on t ∈ [0, 1], with x(0) = 0.1 ∈ Rd.
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Runge–Kutta (RK) methods
RK methods match higher-order Taylor expansions [Runge, 1895, Kutta, 1901]

D Explicit RK methods (like many other classical solvers) generalize Euler’s method. An s-stage RK
method chooses the coefficients (a, b, c) in

x̂(h) = x0 + h
s∑
i=1

biyi, with yi = f

x0 + h
i−1∑
j=1

aijyj

 ,

to match the p-th order Taylor polynomial
∑p

i=1
x(i)(0)

i! hi for a maximal p ≤ s.

D E.g.,the standard RK4 solver fits a p = 4-th order Taylor polynomial with s = 4 stages.

D Hence, assuming x(t) = x̂(t), RK assumes to perform iterated Hermite interpolation with perfect
data on x(i)(t), i ∈ {1, ... , 4}.
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Unaware of Uncertainty: RK falsely assumes perfect data
Since x(t) 6= x̂(t) for t > 0, the uncertainty-unaware assumptions of RK are too optimistic.
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Inferring Dynamical Systems...
...from data (statistics) and from mechanistic model (numerics)

In realitas, all (temporal) dynamical systems x : [0,T]_Rd follow an ODE:

ODE ẋ(t) = f(x(t)) on t ∈ [0,T], under initial condition x(0) = x0 ∈ Rd.

Statistics: data available, but ODE unknown

Method: Treat the dynamical system like a
time series. Data comes from a sensor, e.g. on
the derivative

p(zt) = N (zt; ẋ(t),R).

Numerics: ODE known, but no data available

Method: Construct iterative extrapolation with
information

ẋ(t) = f(x(t)) ≈ f(x̂(t)) =: yt.

where x̂(t) is the estimate of x(t)

If we construct a statistical model that treats yt like zt, time-series methods are unlocked for ODEs!
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ODEs as a stochastic filtering problem

This view turns ODEs into a stochastic filtering problem:

modeled by a D-dimensional stochastic process {X(t); t ∈ [0,T]} from which the solution

x(t) ∼ H0X(t), for some H0 ∈ Rd×D. (1)

and the derivative

ẋ(t) ∼ HX(T) for some H ∈ Rd×D. (2)

can be linearly extracted.
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A Bayesian model for ODEs

1. Prior: linear time-invariant SDE

dX(t) = FX(t) dt + L dB(t) (3)

which yield the discretized dynamic model

p (X(t + h) | X(t)) = N (A(h)X(t),Q(h)). (4)

2. Likelihood: The measurement model uses the current mismatch between solution and derivative state:

p(Z(t) | X(t)) = N (f(H0X(t))− HX(t),R) . (5)

3. Data: By the ODE this mismatch is observed to be zero

Z(t) ≡ 0. (6)

This is a complete probabilistic state space model (SSM) which unlocks new methods!

11



Mission complete: a statistical model for ODEs...
...that unlocks all of Bayesian filtering for ODEs [Tronarp et al., 2019]

Recipe to invent new ODE solvers:
1. Choose a prior for x:

x(t) ∼ dX(t) = FX(t) dt + L dB(t)

2. Construct SSM with dynamic model from
prior

3. Copy a Bayesian filter (or smoother) from
signal processing

4. (optional: Use active learning to choose
points ξ̂ for evaluations f(ξ̂), see
[Kersting and Hennig, 2016])

Alternative title: ‘Probabilistic Numerical
Methods for ODEs’

The resulting ODE filters and smoothers inherit the excellent linear-time properties of filters and
smoothers!
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Illustration of an ODE filtering step
Kalman ODE filtering with IWP prior
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An elementary example: Kalman ODE Filtering
an iterative application of Bayes’ rule Plots from [Schober et al., 2019]

In every step, a Bayes’ update is computed...
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An elementary example: Kalman ODE filter
Plots from [Schober et al., 2019]

...which when iterated over [0,T]...
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An elementary example: Kalman ODE filter
Plots from [Schober et al., 2019]

...yields a posterior distribution.
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Choice of prior
a new way to categorize ODEs [Kersting and Mahsereci, 2020]

1. Matérn: the general Gauss-Markov prior for highly-specific ODEs

dX(t) =


0 1 0 ... 0
...

. . .
. . . 0

...
. . . 0 1

c0 ... ... cq

X(t) dt +


0
...
0
σ

 dB(t),

2. integrated Brownian motion (c0, ... , cq) = 0: for generic ODEs (Taylor predictions)
3. integrated Ornstein–Uhlenbeck process (c0, ... , cq−1) = 0, cq = −θ: for ODEs with drift to equilibrium level

explored in [Kersting et al., 2020b]
4. periodic prior: Fourier predictions for oscillators

dX(t) =

F1 0
. . .

0 FJ

X(t) dt + 0 dB(t), with Fj =
[

0 −jw0
jw0 0

]
,

which approximates the periodic kernel [Kersting and Mahsereci, 2020].
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Active learning in ODE filtering
beyond signal-processing literature [Kersting and Hennig, 2016]

D Unlike in signal processing, ODE sovers can decide at which point ξ̂ ∈ Rd to collect inform. f(ξ̂)
D Given a predictive distribution p(x(ih)) = N (x(ih); m−i ,P−i ), the expected value of ẋ(ih) is

E
[
ẋ(ih) |m−i ,P−i

]
=
∫

f(ξ) dN (ξ;m−i ,P−i ); ∀i ∈ {1, ... ,N} (7)

D active learning by BQ of eq. (7) for each i gives better-calibrated uncertainty, as shown in
[Kersting and Hennig, 2016]

D joint active learning for all i = 1, ... ,N seems promising future research to reduce # func. evals.
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Theory
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BQ (with GM prior)⊂ ODE filtering
ODE filtering generalizes BQ whenever applicable [Tronarp et al., 2019]

Proposition
Consider the integral ∫ T

0
g(t) dt (8)

and let g be a priori modeled by a Gauss-Markov {Xt ; t ∈ [0, T]} process. Then, the Kalman ODE filter computes the BQ posterior to
the IVP

ODE ẋ(t) = g(t) on t ∈ [0, T], with initial condition x(0) = 0 ∈ Rd (9)

in the sense that the distribution p(x(T) | z1:T) coincides with the BQ output for Eq.(8) with design points {ih; i = 1, ..., Th }.

Proof: See Appendix A of
[Tronarp et al., 2019].
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Convergence Rates of Kalman ODE Filters
Local Convergence Rates [Kersting et al., 2020b, Theorem 8]

Theorem (local convergence rates)
Let f be sufficiently regular, and R > 0 an arbitrary noise model. If

D q ∈ N, and
D the prior X is a q-times integrated Ornstein–Uhlenbeck process or integrated Brownian motion

then we locally have:
D optimal polynomial convergence:

∥∥m(h)− x(h)
∥∥ ≤ Khq+1, and

D asymptotically well-calibrated uncertainties:
√

P(h) ≤ Khq+1/2.

Proof idea:
(i) note that the predictive mean deviates from a qth Taylor expansion byO(hq+1),
(ii) apply Taylor’s theorem to the predictive mean, and
(iii) use multiple triangle and Lipschitz inequalities.

20



Why is a global convergence proof more difficult?
Because we cannot assume the steady-state! [Kersting et al., 2020b, Proposition 10]

In every Kalman ODE filtering step nh_(n + 1)h

mn+1 = mn + Kn

[
f(m(0)−

n+1 )−m(1)−
n+1

]
,

the Kalman gain Kn = P−n Hᵀ
n
[
HP−n Hᵀ + R

]−1 is adaptive to num. uncertainty P−n and eval. noise R.

Proposition (global bounds on Kalman gains)
For all constant R ≥ 0, then the limit steady-state is

lim
n _∞

K(0)
n =

√
4Rσ2h + σ4h2

σ2h +
√
4σ2Rh + σ4h2

h, lim
n _∞

K(1)
n = σ2h +

√
4σ2Rh + σ4h2

σ2h +
√
4σ2Rh + σ4h2 + 2R

.

If moreover the initial covariance P0 is small enough and R ≡ Khp with p ∈ [0,∞], then

(global bounds on gains) max
n∈{1,...,N}

∥∥∥K(0)
n

∥∥∥ ≤ Kh, max
n∈{1,...,N}

∥∥∥1− K(1)
n

∥∥∥ ≤ Kh(p−1)∨0.
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Convergence Rates of Kalman ODE Filters
Global Convergence Rates [Kersting et al., 2020b, Theorems 14 & 15]

Theorem (global convergence rates)
Let f be sufficiently regular, and R ≡ Khp for some p ≥ 1. If

D q = 1, and

D prior X is a q-times integrated Brownian motion.

then we globally have:

D optimal polynomial convergence:
∥∥m(T)− x(T)

∥∥ ≤ K(T)hq

D asymptotically well-calibrated uncertainties:
√

P(T) ≤ K(T)hq.

Proof idea: Define ε(nh) :=
∥∥m(nh)− x(nh)

∥∥, find limit of Kalman gains, and prove that (difficult part)

ε((n + 1)h)− ε(nh) ≤ Khq+1 + Khq
n−1∑
l=0

[
ε((l + 1)h)− ε(lh)

]
. (10)

and apply a special version of the discrete Grönwall inequality from [Clark, 1987] to (10).
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Experiments: O(hq) rates of Kalman ODE Filters
are confirmed and seem to extend to q ∈ {2, 3, ... }! [Kersting et al., 2020b, Section 8]

10−2.0 10−6.0 10−10.0 10−14.0

102.5

103.0

103.5

104.0

104.5

105.0

#E
val

so
ff

linear ODE (69) and R ≡ 0

10−0.0 10−2.0 10−4.0 10−6.0 10−8.0 10−10.0

102.5

103.0

103.5

104.0

104.5

105.0

linear ODE (69) and R ≡ 1 · hq

10−2.0 10−6.0 10−10.0 10−14.0
101.0

101.5

102.0

102.5

103.0

103.5

104.0

#E
val

so
ff

logistic ODE (71) and R ≡ 0

10−2.0 10−4.0 10−6.0 10−8.0 10−10.0 10−12.0
101.0

101.5

102.0

102.5

103.0

103.5

104.0

logistic ODE (71) and R ≡ 1 · hq

10−1.0 10−2.0 10−3.0 10−4.0 10−5.0

101.7

101.9

102.1

102.3

102.5

102.7

global error ‖m(T )− x(T )‖

#E
val

so
ff

FitzHugh–Nagumo (73) and R ≡ 0

10−1.0 10−2.0 10−3.0 10−4.0

101.7

101.9

102.1

102.3

102.5

102.7

global error ‖m(T )− x(T )‖

FitzHugh–Nagumo eq. (73) and R ≡ 1 · hq

q=1

q=2

q=3

h1 conv.

h2 conv.

h3 conv.

h4 conv.

23



New Experiments by [Krämer and Hennig, 2020]...
...extend the O(hq) rates to up to q = 11!!! source: N. Krämer, P. Hennig “Stable Implementation of Probabilistic ODE Solvers”, 2020
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Even rates ofO(hq+1) are observed here (and in previous experiments).
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Particle ODE filter captures true posterior
detects Bifurcation and other non-Gaussian phenomena at higher cost [Tronarp et al., 2019, Theorem 1]

D The true posterior is non-Gaussian.

D Particle ODE filtering approximates the true posterior weakly.

D Standard MCMC rate
ofO(

√
# particles)
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Particle ODE filter captures true posterior
detects Bifurcation and other non-Gaussian phenomena at higher cost [Tronarp et al., 2019, Theorem 1]
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Inverse Problems
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ODE Inverse Problems
A mix of numerics and statistics [Kersting et al., 2020a]

Simulation
F(θ) ∈ Rd

Parameter
θ ∈ Θ

Forward Map (likelihood): θ 7→ F(θ)

Inverse Problem: F(θtrue) + ‘noise’ 7→ θtrue

The ODE ẋ(t) = f(x(t), θ) on t ∈ [0,T], with x(0) = x0 ∈ Rd,

has forward map F : θ 7→
[
t 7→ x0 +

∫ t

0
f(x(s), θ) ds

]
.

D The forward problem is well-posed. (numerical analysis)
D The inverse problem is ill-posed. (statistics, machine learning)
D The mix of numerical and statistical estimation invites a treatment by probabilistic numerics.
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ODE filter inserts uncertainty-aware likelihood...
...into ‘likelihood-free’ ODE inverse problems [Kersting et al., 2020a]

D Inverse problems are called likelihood-free if F is too expensive to approximate exactly, as is the
case for ODEs

D Suppose we observe noisy data z = z(t1:M) of the true x = x(t1:M), then the lik.-free case uses an

uncertainty-unaware likelihood p(z | x) = N
(
z; x,σ2IM

) (lik.-free)
= N

(
z; x̂,σ2IM

)
D If we however use the ODE-filtering distributionN (xθ ;mθ ,P), we obtain an

uncertainty-aware likelihood p(z | θ) = N (z; x0 + Jθ, P + σ2IM)︸ ︷︷ ︸
num. + stat. var.

)

29



Gradients and Hessians are now available...
...because the filtering mean is twice differentiable [Kersting et al., 2020a]

The uncertainty-aware likelihood p(z | θ) = N (z; x0 + Jθ︸ ︷︷ ︸
∈C2(Θ,Rd)

,P + σ2IM)) is twice differentiable,

using the Jacobian estimator J = J(θ̂) of θ 7→ xθ which is freely-available from ODE-filtering output.
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Gradient-based outperforms likelihood-free/gradient-free
the modeling of uncertainty by PN increases sample-efficiency [Kersting et al., 2020a]

Sampling: Gradient-based methods more quickly find and cover regions of high probability.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast

Optimization: Gradient-based optimizers find local maxima with less samples.

Lotka Volterra Protein Transduction Glucose Uptake in Yeast
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Summary

We demonstrated how ODE filters (and smoothers) advance the three promises of PN:

1. invention of new statistically-optimal algorithms,
2. more flexible classification of problems by statistical model selection, and
3. comprehensive uncertainty quantification.

Further material:

D Check out the Python code in the probnum-package: https://probnum.readthedocs.io
D Check out recent publications by F. Tronarp, N. Bosch and N. Krämer (Tübingen)
D Stay tuned for the PN book

Thank you!
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Classical solutions of IVPs
plots: Runge-Kutta of order 3

...we need to extrapolate (xk _ xk−1), how do classical solvers do that?
D Estimate ẋ(ti), t0 ≤ t1 ≤ · · · ≤ tn ≤ t0 + h by evaluating yi ≈ f(x̂(ti)), where x̂(t) is itself an

estimate for x(t)
D Use this data yi := ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h
b∑
i=1

wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)
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Classical solutions of IVPs
plots: Runge-Kutta of order 3

...we need to extrapolate (xk _ xk−1), how do classical solvers do that?
D Estimate ẋ(ti), t0 ≤ t1 ≤ · · · ≤ tn ≤ t0 + h by evaluating yi ≈ f(x̂(ti)), where x̂(t) is itself an

estimate for x(t)
D Use this data yi := ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h
b∑
i=1

wiyi.

Information in these calculations:

ẋ(t) = f(x(t)) ≈ f(x̂(t))

For information, f is evaluated at (or around) the current numerical estimate x̂ of x!
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Equivalences with Classical Methods

Since the prediction step is a Taylor expansion

m−(t + h) =
n∑
i=1

hi

i!
m(i)(t + th) (11)

and since generic numerical methods match Taylor expansions (as they are worst-case optimal), the
Kalman ODE filter with Integrated Brownian motion prior has been found to be

D equivalent to Runge–Kutta (by some unnatural choices) [Schober et al., 2019],
D equivalent to Nordsieck methods (when covariance matrices in stationary state)

[Schober et al., 2014].
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Choosing the uncertainty scale σ2

tuning the constant before the asymptotically well-calibrated rates [Tronarp et al., 2019, Proposition 4]

Recall that the prior on x : [0,T] is defined by an SDE

dX(t) = FX(t) dt + σLdB(t),

driven by a Brownian motion B(t) with variance σ2 > 0 which linearly scales the posterior variance.

Theorem
The maximum-likelihood estimate σ̂2 for σ2 is given by

σ̂2 =
1
Nd

N∑
n=1

[
f(H0m−(nh))− Hm−(nh)

]ᵀ [HP−n Hᵀ + R
]−1 [f(H0m−(nh))− Hm−(nh)

]
.

In particular, for q-times IBM prior, d = 1, and R = 0:

σ̂2 =
(2q− 1) · (q− 1)!2

Nh2q−1

N∑
n=1

(
f(H0m−(nh))− Hm−(nh)

)2 .
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