Uncertainty-Aware Numerical Solutions of ODEs by Bayesian Filtering

Dr. Hans Kersting

MaxEnt2021, TU Graz 06 July 2021

Département Informatique

1. Introduction to probabilistic numerics and ODE filtering/smoothing

2. **Theory**

3. Application to ODE inverse problems

Main Collaborators (of presented materials)

Philipp Hennig

Filip Tronarp

Nicholas Krämer

Tim J. Sullivan

Introduction

Probabilistic numerics recasts numerics as inferential statistics

Both the evaluation of functions and the collection of data are gathering of (Shannon) information. ▷ Statistics estimates parameters in statistical models from collected data ▷ Numerics approximates solutions of numerical problems from function evaluations By providing a statistical model that links func. eval. to the solution of a numerical problem, problems for graphical problem,

probabilistic numerics solves numerical problems by statistics (or machine learning).

E.g. Integrals: compute Qol $Q(f) = \int f(x)d\mu(x) \in Q$:

- 1. Collect evaluations $f(x_i) \in \mathbb{Z}$ given $f \in \mathcal{X}$
- 2. Compute approximation of Q(f) based on $f | f(x_i)$

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s,$$

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

ODE
$$\dot{x}(t) = f(x(t), t)$$
 on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$

generalizes quadrature problems by the fundamental theorem of calculus:

$$x:]0, T] \rightarrow \mathbb{R}^d, \qquad t \mapsto x_0 + \int_0^t f(x(s), s) \, \mathrm{d}s$$

Bayesian Quadrature (BQ)

Solving ODEs by iterated first-order Taylo<u>r expansions</u>

logistic ODE: $\dot{x}(t) = f(x(t)) = 5x(t)[1 - x(t)]$ on $t \in [0, 1]$, with $x(0) = 0.1 \in \mathbb{R}^d$.

Explicit RK methods (like many other classical solvers) generalize Euler's method. An s-stage RK method chooses the coefficients (a, b, c) in

$$\hat{x}(h) = x_0 + h \sum_{i=1}^{s} b_i y_i$$
, with $y_i = f\left(x_0 + h \sum_{j=1}^{i-1} a_{ij} y_j\right)$,

to match the *p*-th order **Taylor** polynomial $\sum_{i=1}^{p} \frac{x^{(i)}(0)}{i!} h^{i}$ for a maximal $p \leq s$.

- + E.g.,the **standard RK4 solver** fits a *p* = **4**-th order Taylor polynomial with *s* = **4** stages.
- + Hence, assuming x(t) = x̂(t), RK assumes to perform iterated Hermite interpolation with perfect data on x⁽ⁱ⁾(t), i ∈ {1, ..., 4}.

Unaware of Uncertainty: RK falsely assumes perfect data

Since $x(t) \neq \hat{x}(t)$ for t > 0, the **uncertainty-unaware** assumptions of RK are **too optimistic**.

..from data (statistics) and from mechanistic model (numerics)

In realitas, all (temporal) dynamical systems $x : [0, T] \rightarrow \mathbb{R}^d$ follow an ODE:

ODE $\dot{x}(t) = f(x(t))$ on $t \in [0, T]$, under initial condition $x(0) = x_0 \in \mathbb{R}^d$.

Statistics: data available, but ODE unknown

Method: Treat the dynamical system like a time series. Data comes from a sensor, e.g. on the derivative

 $p(z_t) = \mathcal{N}(z_t; \dot{x}(t), R).$

Numerics: ODE known, but no data available

Method: Construct iterative extrapolation with information

 $\dot{x}(t) = f(x(t)) \approx f(\hat{x}(t)) =: y_t.$

where $\hat{x}(t)$ is the estimate of x(t)

If we construct a statistical model that treats y_t like z_t, time-series methods are unlocked for ODEs!

ODEs as a stochastic filtering problem

This view turns ODEs into a stochastic filtering problem:

modeled by a *D*-dimensional **stochastic process** {*X*(*t*); $t \in [0, T]$ } from which the **solution**

$$\mathbf{x}(t) \sim H_0 \mathbf{X}(t), \quad \text{for some } H_0 \in \mathbb{R}^{d \times D}.$$
 (1)

and the derivative

$$\dot{\mathbf{x}}(t) \sim H\mathbf{X}(T)$$
 for some $\mathbf{H} \in \mathbb{R}^{d \times D}$. (2)

can be linearly extracted.

A Bayesian model for ODEs

1. Prior: linear time-invariant SDE

$$dX(t) = FX(t) dt + L dB(t)$$
(3)

which yield the discretized dynamic model

$$p(X(t+h) \mid X(t)) = \mathcal{N}(A(h)X(t), Q(h)).$$

$$\tag{4}$$

2. Likelihood: The measurement model uses the current mismatch between solution and derivative state:

$$p(Z(t) | X(t)) = \mathcal{N}(f(H_0X(t)) - HX(t), R).$$
(5)

3. Data: By the ODE this mismatch is observed to be zero

$$Z(t) \equiv 0. \tag{6}$$

This is a complete probabilistic state space model (SSM) which unlocks new methods!

Mission complete: a statistical model for ODEs...

...that unlocks all of Bayesian filtering for ODEs

Recipe to invent new ODE solvers:

1. Choose a **prior** for **x**:

 $x(t) \sim dX(t) = FX(t) dt + L dB(t)$

- 2. Construct **SSM** with dynamic model from prior
- 3. Copy a Bayesian filter (or smoother) from signal processing

[Tronarp et al., 2019]

Mission complete: a statistical model for ODEs...

...that unlocks all of Bayesian filtering for ODEs

Recipe to invent new ODE solvers:

1. Choose a **prior** for **x**:

 $x(t) \sim dX(t) = FX(t) dt + L dB(t)$

- 2. Construct **SSM** with dynamic model from prior
- 3. Copy a Bayesian filter (or smoother) from signal processing
- 4. (optional: Use **active learning** to choose points $\hat{\xi}$ for evaluations $f(\hat{\xi})$, see [Kersting and Hennig, 2016])

Mission complete: a statistical model for ODEs...

Recipe to invent new ODE solvers:

1. Choose a **prior** for **x**:

 $x(t) \sim dX(t) = FX(t) dt + L dB(t)$

- 2. Construct **SSM** with dynamic model from prior
- 3. Copy a Bayesian filter (or smoother) from signal processing
- 4. (optional: Use active learning to choose points $\hat{\xi}$ for evaluations $f(\hat{\xi})$, see [Kersting and Hennig, 2016])

Alternative title: 'Probabilistic Numerical Methods for ODEs'

The resulting **ODE filters and smoothers** inherit the excellent linear-time properties of filters and smoothers!

Illustration of an ODE filtering step

Kalman ODE filtering with IWP prior

An elementary example: Kalman ODE Filtering

an iterative application of Bayes' rule

Plots from [Schober et al., 2019]

In every step, a Bayes' update is computed...

...which when iterated over **[0, 7]**...

...which when iterated over **[0, 7]**...

... yields a posterior distribution.

1. Matérn: the general Gauss-Markov prior for highly-specific ODEs

$$\mathbf{d}\mathbf{X}(t) = \begin{pmatrix} 0 & 1 & 0 \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & 1 \\ c_0 & \dots & \dots & c_q \end{pmatrix} \mathbf{X}(t) \, \mathbf{d}t + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \sigma \end{pmatrix} \, \mathbf{d}B(t),$$

2. integrated Brownian motion $(c_0, ..., c_q) = 0$: for generic ODEs (Taylor predictions)

- integrated Ornstein–Uhlenbeck process (c₀,..., c_{q-1}) = 0, c_q = -θ: for ODEs with drift to equilibrium level explored in [Kersting et al., 2020b]
- 4. periodic prior: Fourier predictions for oscillators

Choice of prior

$$\mathbf{dX}(t) = \begin{pmatrix} F_1 & 0 \\ & \ddots & \\ 0 & & F_J \end{pmatrix} \mathbf{X}(t) \, \mathbf{dt} + 0 \, \mathbf{dB}(t), \quad \text{with } F_j = \begin{bmatrix} 0 & -jw_0 \\ jw_0 & 0 \end{bmatrix}$$

which approximates the periodic kernel [Kersting and Mahsereci, 2020].

Active learning in ODE filtering

beyond signal-processing literature

- + Unlike in signal processing, ODE sovers can **decide** at which point $\hat{\xi} \in \mathbb{R}^d$ to collect inform. $f(\hat{\xi})$
- + Given a predictive distribution $p(x(ih)) = \mathcal{N}(x(ih); m_i^-, P_i^-)$, the **expected value of** $\dot{x}(ih)$ is

$$\mathbb{E}\left[\dot{x}(ih) \mid m_{i}^{-}, P_{i}^{-}\right] = \int f(\xi) \, \mathrm{d}\mathcal{N}(\xi; m_{i}^{-}, P_{i}^{-}); \qquad \forall i \in \{1, \dots, N\}$$
(7)

- active learning by BQ of eq. (7) for each *i* gives better-calibrated uncertainty, as shown in [Kersting and Hennig, 2016]
- + joint active learning for all *i* = 1, ..., *N* seems promising future research to reduce # func. evals.

Theory

BQ (with GM prior) \subset ODE filtering

ODE filtering generalizes BQ whenever applicable

Proposition

Consider the integral

$\int_0^T g(t) \, \mathrm{d}t$

(8)

and let g be **a priori** modeled by a Gauss-Markov $\{X_t; t \in [0, T]\}$ process. Then, the **Kalman ODE filter** computes the BQ posterior to the IVP

DDE
$$\dot{\mathbf{x}}(t) = \mathbf{g}(t)$$
 on $t \in [0, T]$, with initial condition $\mathbf{x}(0) = \mathbf{0} \in \mathbb{R}^d$ (9)

in the sense that the distribution $p(x(T) \mid z_{1:T})$ coincides with the BQ output for Eq.(8) with design points {*i*h; *i* = 1, ..., $\frac{T}{h}$ }.

Proof: See Appendix A of [Tronarp et al., 2019].

Local Convergence Rates

Theorem (local convergence rates)

Let f be sufficiently regular, and R > 0 an arbitrary noise model. If

+ $oldsymbol{q} \in \mathbb{N}$, and

+ the prior **X** is a **q**-times integrated Ornstein–Uhlenbeck process or integrated Brownian motion then we locally have:

- + optimal polynomial convergence: $\|m(h) x(h)\| \le Kh^{q+1}$, and
- + asymptotically well-calibrated uncertainties: $\sqrt{P(h)} \le Kh^{q+1/2}$.

Proof idea:

- (i) note that the predictive mean deviates from a $q^{ ext{th}}$ Taylor expansion by $\mathcal{O}(h^{q+1})$,
- (ii) apply Taylor's theorem to the predictive mean, and
- (iii) use multiple triangle and Lipschitz inequalities.

Why is a global convergence proof more difficult?

Because we cannot assume the steady-state!

In every Kalman ODE filtering step $nh \rightarrow (n + 1)h$

$$m_{n+1} = m_n + K_n \left[f(m_{n+1}^{(0)-}) - m_{n+1}^{(1)-} \right],$$

the Kalman gain

$$K_n = P_n^- H_n^{\mathsf{T}} \left[H P_n^- H^{\mathsf{T}} + R \right]^{-1}$$

is adaptive to num. uncertainty P_n^- and eval. noise R.

Proposition (global bounds on Kalman gains)

For all constant $R \ge 0$, then the *limit steady-state* is

$$\lim_{n \to \infty} K_n^{(0)} = \frac{\sqrt{4R\sigma^2 h + \sigma^4 h^2}}{\sigma^2 h + \sqrt{4\sigma^2 R h + \sigma^4 h^2}} h, \qquad \qquad \lim_{n \to \infty} K_n^{(1)} = \frac{\sigma^2 h + \sqrt{4\sigma^2 R h + \sigma^4 h^2}}{\sigma^2 h + \sqrt{4\sigma^2 R h + \sigma^4 h^2} + 2h}$$

If moreover the initial covariance P_0 is small enough and $R \equiv Kh^p$ with $p \in [0, \infty]$, then

(global bounds on gains)
$$\max_{n \in \{1,\dots,N\}} \left\| K_n^{(0)} \right\| \le Kh, \qquad \max_{n \in \{1,\dots,N\}} \left\| 1 - K_n^{(1)} \right\| \le Kh^{(p-1)\vee 0}.$$

Convergence Rates of Kalman ODE Filters

Global Convergence Rates

Theorem (global convergence rates)

Let **f** be sufficiently regular, and $R \equiv Kh^p$ for some $p \ge 1$. If

- + q = 1, and
- prior X is a q-times integrated Brownian motion.

then we globally have:

- + optimal polynomial convergence: $||m(T) x(T)|| \le K(T)h^q$
- + asymptotically well-calibrated uncertainties: $\sqrt{P(T)} \leq K(T)h^{q}$.

Proof idea: Define $\varepsilon(nh) := ||m(nh) - x(nh)||$, find limit of Kalman gains, and *prove that* (difficult part)

$$\varepsilon((n+1)h) - \varepsilon(nh) \le Kh^{q+1} + Kh^q \sum_{l=0}^{n-1} \left[\varepsilon((l+1)h) - \varepsilon(lh)\right].$$
(10)

and apply a special version of the discrete Grönwall inequality from [Clark, 1987] to (10).

Experiments: $\mathcal{O}(h^q)$ rates of Kalman ODE Filters

are confirmed and seem to extend to $q \in \{2, 3, ...\}$

[Kersting et al., 2020b, Section 8]

New Experiments by [Krämer and Hennig, 2020]...

...extend the $\mathcal{O}(h^q)$ rates to up to q = 11!!!

source: N. Krämer, P. Hennig "Stable Implementation of Probabilistic ODE Solvers", 2020

Even **rates of** $\mathcal{O}(h^{q+1})$ are observed here (and in previous experiments).

Particle ODE filter captures true posterior

detects Bifurcation and other non-Gaussian phenomena at higher cost

- + The true posterior is non-Gaussian.
- + Particle ODE filtering approximates the true posterior weakly.
- + Standard MCMC rate of $\mathcal{O}(\sqrt{\# \text{ particles}})$

Particle ODE filter captures true posterior

detects Bifurcation and other non-Gaussian phenomena at higher cost

[Tronarp et al., 2019, Theorem 1]

bifurcating ODE flpwrticle-filtering representation

Inverse Problems

A mix of numerics and statistics

he ODE
$$\dot{x}(t) = f(x(t), \theta)$$
 on $t \in [0, T]$, with $x(0) = x_0 \in \mathbb{R}^d$,
has forward map $F : \theta \mapsto \left[t \mapsto x_0 + \int_0^t f(x(s), \theta) \, \mathrm{d}s \right]$.

- + The forward problem is well-posed. (numerical analysis)
- + The inverse problem is ill-posed. (statistics, machine learning)
- + The mix of numerical and statistical estimation invites a treatment by probabilistic numerics.

ODE filter inserts uncertainty-aware likelihood...

...into 'likelihood-free' ODE inverse problems

- Inverse problems are called likelihood-free if F is too expensive to approximate exactly, as is the case for ODEs
- + Suppose we observe **noisy data** $z = z(t_{1:M})$ of the true $x = x(t_{1:M})$, then the lik.-free case uses an

uncertainty-<u>un</u>aware likelihood $p(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}(\mathbf{z}; \mathbf{x}, \sigma^2 I_M) \stackrel{\text{(lik.-free)}}{=} \mathcal{N}(\mathbf{z}; \mathbf{\hat{x}}, \sigma^2 I_M)$

+ If we however use the **ODE-filtering distribution** $\mathcal{N}(\mathbf{x}_{\theta}; \mathbf{m}_{\theta}, \mathbf{P})$, we obtain an

uncertainty-aware likelihood

$$p(\mathbf{z} \mid \theta) = \mathcal{N}(\mathbf{z}; x_0 + J\theta, \underbrace{\mathbf{P} + \sigma^2 I_M})$$

num. + stat. var.

Gradients and Hessians are now available...

..because the filtering mean is twice differentiable

[Kersting et al., 2020a]

The uncertainty-aware likelihood

$$p(\mathbf{z} \mid \theta) = \mathcal{N}(\mathbf{z}; \underbrace{\mathbf{x}_0 + J\theta}_{\in C^2(\Theta, \mathbb{R}^d)}, \mathbf{P} + \sigma^2 I_M))$$
 is twice differentiable,

using the **Jacobian estimator** $J = J(\hat{\theta})$ of $\theta \mapsto \mathbf{x}_{\theta}$ which is **freely-available** from ODE-filtering output.

Gradient-based outperforms likelihood-free/gradient-free

the modeling of uncertainty by PN increases sample-efficiency

Sampling: Gradient-based methods more quickly find and cover regions of high probability.

Optimization: Gradient-based optimizers find local maxima with less samples.

We demonstrated how ODE filters (and smoothers) advance the three promises of PN:

- 1. invention of new statistically-optimal algorithms,
- 2. more flexible classification of problems by statistical model selection, and
- 3. comprehensive uncertainty quantification.

We demonstrated how ODE filters (and smoothers) advance the three promises of PN:

- 1. invention of new statistically-optimal algorithms,
- 2. more flexible classification of problems by statistical model selection, and
- 3. comprehensive uncertainty quantification.

Further material:

- + Check out the Python code in the probnum-package: https://probnum.readthedocs.io
- + Check out recent publications by F. Tronarp, N. Bosch and N. Krämer (Tübingen)
- + Stay tuned for the PN book

Thank you!

Clark, D. S. (1987). Short proof of a discrete Gronwall inequality. Discrete Appl. Math., 16(3):279–281.

Euler, L. (1768). Institutionum Calculi Integralis, volume I.

- Hennig, P., Osborne, M. A., and Girolami, M. (2015). Probabilistic numerics and uncertainty in computations. Proc. Roy. Soc. London A, 471(2179).
- Kersting, H. and Hennig, P. (2016). Active uncertainty calibration in Bayesian ODE solvers. Uncertainty in Artificial Intelligence (UAI).
- Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., and Hennig, P. (2020a).
 Differentiable likelihoods for fast inversion of 'likelihood-free' dynamical systems.

In International Conference on Machine Learning (ICML).

- Kersting, H. and Mahsereci, M. (2020).
 A Fourier state space model for Bayesian ODE filters. In Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, ICML.
- Kersting, H., Sullivan, T. J., and Hennig, P. (2020b). Convergence rates of Gaussian ODE filters. Stat. Comput., 30(6):1791–1816.
- Krämer, N. and Hennig, P. (2020).
 Stable implementation of probabilistic ODE solvers.
 ArXiv e-prints, stat.ML 2012.10106.
- Kutta, W. (1901).
 Beitrag zur n\u00e4herungsweisen Integration totaler Differentialgleichungen.
 Zeitschrift für Mathematik und Physik, 46:435–453.
- Oates, C. J. and Sullivan, T. J. (2019). A modern retrospective on probabilistic numerics.

Stat. Comput., 29(6):1335-1351.

- Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen, 46:167–178.
- Schober, M., Duvenaud, D., and Hennig, P. (2014).
 Probabilistic ODE solvers with Runge-Kutta means. In Advances in Neural Information Processing Systems (NeurIPS).
- Schober, M., Särkkä, S., and Hennig, P. (2019). A probabilistic model for the numerical solution of initial value problems. Stat. Comput., 29(1):99–122.
- Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019). Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. Stat. Comput., 29(6):1297–1315.

Backup

plots: Runge-Kutta of order 3

...we need to extrapolate $(x_k \rightarrow x_{k-1})$, how do classical solvers do that?

- + Estimate $\dot{x}(t_i)$, $t_0 \le t_1 \le \cdots \le t_n \le t_0 + h$ by evaluating $y_i \approx f(\hat{x}(t_i))$, where $\hat{x}(t)$ is itself an estimate for x(t)
- + Use this data $y_i := \dot{x}(t_i)$ to estimate $x(t_0 + h)$, i.e.

$$\hat{x}(t_0+h)\approx x(t_0)+h\sum_{i=1}^b w_iy_i.$$

plots: Runge-Kutta of order 3

...we need to extrapolate $(x_k \rightarrow x_{k-1})$, how do classical solvers do that?

- + Estimate $\dot{x}(t_i)$, $t_0 \le t_1 \le \cdots \le t_n \le t_0 + h$ by evaluating $y_i \approx f(\hat{x}(t_i))$, where $\hat{x}(t)$ is itself an estimate for x(t)
- + Use this data $y_i := \dot{x}(t_i)$ to estimate $x(t_0 + h)$, i.e.

plots: Runge-Kutta of order 3

...we need to extrapolate $(x_k \rightarrow x_{k-1})$, how do classical solvers do that?

- + Estimate $\dot{x}(t_i)$, $t_0 \le t_1 \le \cdots \le t_n \le t_0 + h$ by evaluating $y_i \approx f(\hat{x}(t_i))$, where $\hat{x}(t)$ is itself an estimate for x(t)
- + Use this data $y_i := \dot{x}(t_i)$ to estimate $x(t_0 + h)$, i.e.

plots: Runge-Kutta of order 3

...we need to extrapolate $(x_k \rightarrow x_{k-1})$, how do classical solvers do that?

- + Estimate $\dot{x}(t_i)$, $t_0 \le t_1 \le \cdots \le t_n \le t_0 + h$ by evaluating $y_i \approx f(\hat{x}(t_i))$, where $\hat{x}(t)$ is itself an estimate for x(t)
- + Use this data $y_i := \dot{x}(t_i)$ to estimate $x(t_0 + h)$, i.e.

$$\hat{x}(t_0+h)\approx x(t_0)+h\sum_{i=1}^b w_iy_i.$$

Information in these calculations:

$$\dot{x}(t) = f(x(t)) \approx f(\hat{x}(t))$$

For information, f is evaluated at (or around) the current numerical estimate \hat{x} of x!

Since the **prediction step** is a Taylor expansion

$$m^{-}(t+h) = \sum_{i=1}^{n} \frac{h^{i}}{i!} m^{(i)}(t+th)$$
(11)

and since generic numerical methods match **Taylor expansions** (as they are worst-case optimal), the Kalman ODE filter with **Integrated Brownian motion prior** has been found to be

- + equivalent to Runge-Kutta (by some unnatural choices) [Schober et al., 2019],
- + equivalent to Nordsieck methods (when covariance matrices in stationary state) [Schober et al., 2014].

Choosing the uncertainty scale σ^2

tuning the constant before the asymptotically well-calibrated rates

Recall that the **prior** on *x* : **[0**, *T*] is defined by an **SDE**

 $d\mathbf{X}(t) = F\mathbf{X}(t) dt + \sigma L dB(t),$

driven by a **Brownian motion** B(t) with **variance** $\sigma^2 > 0$ which linearly scales the **posterior variance**.

Theorem

The **maximum-likelihood estimate** $\hat{\sigma}^2$ for σ^2 is given by

$$\hat{\sigma}^{2} = \frac{1}{Nd} \sum_{n=1}^{N} \left[f(H_{0}m^{-}(nh)) - Hm^{-}(nh) \right]^{\mathsf{T}} \left[HP_{n}^{-}H^{\mathsf{T}} + R \right]^{-1} \left[f(H_{0}m^{-}(nh)) - Hm^{-}(nh) \right]$$

In particular, for q-times **IBM prior**, d = 1, and R = 0:

$$\hat{\sigma}^{2} = \frac{(2q-1) \cdot (q-1)!^{2}}{Nh^{2q-1}} \sum_{n=1}^{N} \left(f(H_{0}m^{-}(nh)) - Hm^{-}(nh) \right)^{2}$$

End of Backup